**RHEUMATOID FACTOR (RF) ImmunoTurbidimetry 3rd Generation**

*(Aggregated human IgG method)*

**Intended Use**

In vitro diagnostic reagents for the quantitative determination of Rheumatoid Factor (RF) in human serum by means of particle-enhanced turbidimetric immunoassay.

**Background**

The most consistent serological feature of rheumatoid arthritis is the increased concentration of autoantibodies directed against antigenic sites in the Fc region of human and animal IgG, namely rheumatoid factors (RFs) in the blood and joint fluid. The potential role of these factors in the pathogenesis of this disease has been studied extensively, with the finding that both environmental and genetic factors affect production of RF. RF determinations are clinically important for the diagnosis, prognosis, and assessment of therapeutic efficacy of rheumatoid arthritis. The RF is a term used to describe a variety of antibodies (in most cases of the IgM type) that will react with modified human IgG (e.g., IgG in circulating immune complexes, IgG adsorbed to latex, etc.) and IgG of animal origin. RF is highly associated with rheumatoid arthritis, as high as 90% of patients with RA have RF titers of more than 20 IU/mL.

**Test Principle**

This RF test is based upon the RF antigen-antibody reaction

**Reagents**

**R1 Buffer**

50 mmol/L Good’s buffer (pH 7.4).

Sodium azide (0.95 g/L).

**R2 reagent**

Heat-aggregated human IgG (0.5 mg/mL).

Sodium azide (0.95 g/L)

**Materials required but not provided with the kit**

1. **Standard**
   - RF concentration is stated on the vial label.

2. **Controls**

**Precautions and Warnings**

For in vitro diagnostic use only. Do not pipette by mouth. Reagents containing sodium azide must be handled with precaution. Sodium azide can form explosive azides with lead and copper plumbing. Since absence of infectious agents cannot be proven, all specimens and reagents obtained from human blood should always be handled with precaution using established good laboratory practices.

Disposal of all waste material should be in accordance with local guidelines.

As with other diagnostic tests, results should be interpreted considering all other test results and the clinical situation of the patient.

**Reagent Preparation, Storage and Stability**

All reagents are supplied ready to use.

Reagents in the original vial are stable to the expiration date on the vial label when capped and stored at (2 - 8 °C).

**RF Standard:**

The Standard is stable to the expiration date on the vial label when capped and stored at (2 - 8 °C).

Once opened the Standard is stable for 6 weeks if stored tightly closed at 2 - 8 °C after use.

For further storage at - 30 °C divide Standard into aliquots. Stability 3 months. Once thawed never freeze again.

**Specimen collection and preparation**

Fresh serum, stable 2 days at 2 - 8 °C or 3 months at - 20 °C the samples with presence of fibrin should be centrifuged before testing. Do not use highly hemolized or lipemic samples.

**Procedure**

1. **Bring the reagents and the photometer to 37°C**

2. **Assay conditions:**
   - Wavelength
   - Temperature
   - Cut-off

3. **Adjust the instrument to zero with distilled water.

4. **Pipette into a cuvette:**

<table>
<thead>
<tr>
<th>Standard</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reagent (R1)</td>
<td>400 µl</td>
</tr>
<tr>
<td>Standard</td>
<td>25 µl</td>
</tr>
<tr>
<td>Sample</td>
<td>--</td>
</tr>
</tbody>
</table>

Mix and incubate for 2 minutes. Read absorbance (A1).

After addition of R2, incubate and after 5 minutes record 2nd reading (A2).

**Calculation**

Generate a reference curve by successive 1:2 dilutions of calibrator in saline (At Least 4 points are recommended). Use Saline as zero point. Determine Δ absorbance of the sample and each calibrator as following:

\[ \Delta \text{ absorbance of sample} = (A2 - A1) \]

\[ \Delta \text{ absorbance of each calibrator} = (A2 - A1) \text{ for each calibrator} \]

Plot the calibration curve and obtain the result.

**Sensitivity**

3 IU/mL

**Linearity**

500 IU/mL

**Quality Control**

Control sera are recommended to monitor the performance of manual and automated assay procedures. Each laboratory should establish its own Quality Control Scheme and corrective actions if controls do not meet the acceptable tolerances.

**Expected Values**

0-20 IU/mL

Each laboratory should establish an expected range for the geographical area in which it is located.
References


ORDERING INFORMATION

<table>
<thead>
<tr>
<th>CATALOG NO.</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>598 001</td>
<td>100 test</td>
</tr>
</tbody>
</table>